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The purpose of this note is to prove a result on the existence and
uniqueness of elements of best simultaneous approximation and to
communicate that the two results proved by Sahney and Singh |6] are
particular cases of the earlier proved results by Sastry and Naidu |7} and
Sahney and Singh |5].

1. INTRODUCTION

Several mathematicians have studied the problem of best simultaneous
approximation (cf. |1, 4|). Recently Sahney and Singh proved two results
{cf. Theorems I and 2 of |5]) extending results of Holland et al. {3]. The
uniqueness part of Theorem 1 of |5] is incorrect and the uniqueness part of
Theorem 2 of [5] was given by the author in [1]. A more general form of
Theorem 2 is available (cf. |[7]). In this note we prove a result which corrects
the existence part of Theorem 7 of |1]| and the uniqueness part of Theorem 1
of |5]. We also note that the two results proved by Sahney and Singh |6] are
particular cases of the earlier proved results by Sastry and Naidu {7} and
Sahney and Singh [5].

2. BEST SIMULTANEOUS APPROXIMATION

DEFINITION 1. Let C be a subset of a normed linear space X. Given any
bounded subset F of X, define

d(I, Cy= inf suply — x|.
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An element x* in C is said to be a besr simultaneous upproximation (b.s.a.}
o Fif
d(F_ C') = sup I‘ Vo E

ver

DEeFINITION 2. A bounded subset F of a normed linear space X 1s said 1o
be remotal with respect to a subset € of X if tor each x & C there exists a
point /€ F farthest from x. i.c..

flx —flizhx —1i for all p € F.

F is said to be uniquely remotal it such an f exists and is unique.

[t is easy to see that every compact subset of a normed linear space is
remotal with respect to the whole space.

The following two lemmas given in |3]| will be used in the proof of our
main theorem:

LEMMA 1. Let C be any subset of a norined linear space X and F be u
bounded subset of X. Then the mapping &: C — i< defined by

P(x)=sup| vy - x

vel

s continuous.

LEMMA 2. Let C be a convex subset of a normed linear space X and F
be any subset of X. If ¢, and c, are b.s.a. to F by elements of C then Ac, 4
(1 —4)e,. 0 A< L, is also a bs.a. (o F.

The following theorem, which corrects the existence part of Theorem 7 of
[1] and the uniqueness part of Theorem | of |5|. gives the existence and
uniqueness of elements of b.s.a.

THEOREM (Best Simultaneous Approximation Theorem). Let X be «
strictly convex normed linear space, C a compact convex subset of X and F
he a subset of X which is remotal with respect to C. Then there exists a
unique b.s.a. in C to F.

Proof (Existence). Consider the function @ defined previously. By
lLemma |. this function is continuous. Since C is compact. @ attains its
infimum at some x* & C, ie..

sup by —xF = @)= inf @(x)= inf sup v x|
et el Vel el

This establishes the existence of an element of b.s.a.
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Uniqueness:  Suppose xj, x¥F, xf# x¥ in C are two b.s.a. to the set F.
1.e.

s

inf suplix —vli=sup 'y —xfl=sup|r—xF=r (say). (H
vel ¢y vel ver

By Lemma 2 and the convexity of C. (x] + x¥)/2 € C is also an element of
b.s.a. to Floie.,
sup il v —(xf + xF) 21 =r

yel

Since £ is remotal with respect to C. there exists an element /* in F such
that

a2l = (2)
Now (1) implies
/5 =xyl<r  and ST —xFlr
and since the space is strictly convex, we have
L= )2l <
unless xj = x¥. This contradicts (2) and hence the uniqueness.
Remarks. (1) Uniqueness of the element of b.s.a. is also guaranteed if

the function @ defined above attains its infimum at exactly one x* € C.

(2) The unique remotality of F does not guarantee the uniqueness of
element of b.s.a. as claimed by Sahney and Singh in [5. Theorem 1.

(3) Theorem 2 of |5]| was proved in a more general form by Sastry
and Naidu |7. Theorem 3.

(4) Using arguments similar to those of Theorem2 of |5] or
Theorem | of |7]. it can be shown that the above theorem holds if C is a
bounded weakly sequentially compact convex set.

Sahney and Singh proved the following two theorems in |6] on best
simultaneous approximation:

THEOREM 1. Ler X be a strictly convex Banach space. and C a weakly
compact. convex subset of X. Then there exists a unique best simultaneous
approximation from the elements of C to any given compact subset F of X.

THEOREM 2. Let X be a strictly convex normed linear space and C a
reflexive subspace of X. Then for any nonempiy compact subset F of X there
exists one and only one best simultaneous approximation in C.
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Since every compact set is remotal, Theorem 1 is a particular case of the
following result proved by Sastry and Naidu in Theorem 3 of |7] (see also
Remark (4) above).

THEOREM 3. [f X is a strictly convex normed linear space. K is boun-
dedly weakly sequentially compact and convex and F is a farthest point set
with respect to K, then there exists a unique best simultaneous approximation
to F from K.

Theorem 2 (also proved by Bosznay |2]) is a particular case of the
following result proved by Sahney and Singh in Theorem 2 of [5].

THEOREM 4. Let X be a strictly convex normed linear space and C a
reflexive subspace of X. Then there exists one and only one best simultaneous
approximation from the elements of C to any set F that is remotal with
respect to C.
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